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Nonlinear Discrete Hashing
Zhixiang Chen, Jiwen Lu, Senior Member, IEEE, Jianjiang Feng, Member, IEEE, and Jie Zhou, Senior Member, IEEE

Abstract—In this paper, we propose a nonlinear discrete
hashing approach to learn compact binary codes for scalable
image search. Instead of seeking a single linear projection in
most existing hashing methods, we pursue a multilayer network
with nonlinear transformations to capture the local structure
of data samples. Unlike most existing hashing methods that
adopt an error-prone relaxation to learn the transformations,
we directly solve the discrete optimization problem to eliminate
the quantization error accumulation. Specifically, to leverage
the similarity relationships between data samples and exploit
the semantic affinities of manual labels, the binary codes are
learned with the objective to: 1) minimize the quantization error
between the original data samples and the learned binary codes; 2)
preserve the similarity relationships in the learned binary codes;
3) maximize the information content with independent bits; and
4) maximize the accuracy of the predicted labels based on the
binary codes. With an alternating optimization, the nonlinear
transformation and the discrete quantization are jointly optimized
in the hashing learning framework. Experimental results on four
datasets including CIFAR10, MNIST, SUN397, and ILSVRC2012
demonstrate that the proposed approach is superior to several
state-of-the-art hashing methods.

Index Terms—Binary code, discrete optimization, hashing,
multilayer neural network, nonlinear transformation.

I. INTRODUCTION

HASHING approaches map high dimensional data samples
into short binary descriptors to leverage the storage and

the computing speed efficiencies of Hamming codes. Existing
hashing based approaches can be broadly categorized as data-
independent and data-dependent schemes. In data-independent
techniques, projections are first randomly chosen to map data
samples into a low dimensional space and then the results are
binarized to obtain binary codes [1]–[8]. To take advantage of
the distribution of data points, recent research attentions have
been shifted to learning data-dependent binary codes by incor-
porating various machine learning techniques, which can be
summarized as unsupervised [9]–[17], semi-supervised [18],
and supervised [19]–[25] methods.
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Fig. 1. Illustration of our proposed approach. To achieve short yet discrim-
inative binary codes, a joint learning framework is proposed to: 1) preserve
the nonlinear structure of database images with a multi-layer neural network;
2) minimize the quantization loss for better similarity preservation; 3) maxi-
mize the information content of binary codes with the independence constraint
between different bits; and 4) exploit the semantic affinities of manual labels.

Learning based hashing methods demonstrate promising
results by successfully addressing the speed and storage chal-
lenges. Most existing hashing methods assume a linear transfor-
mation to project data points from the high dimensional space
into a low dimensional space. But in many applications, the
data is linearly inseparable and thus the nonlinear data struc-
ture cannot be captured by such single linear projection. On the
other side, by reducing the dimensionality of the data through
learned transformations, the variances of the data in different
dimensions show differences and thus carry different amounts
of information. Directly quantizing the transformed data to pro-
duce binary codes is bound to degrade the performance. To this
end, it is important to design a hashing method that can capture
the latent local structure of data samples and efficiently optimize
the quantization to preserve the similarity relationships between
data points.

This paper proposes a nonlinear discrete hashing (NDH)
learning framework to learn compact binary codes efficiently
that addresses the abovementioned problems. Fig. 1 illustrates
the framework of the proposed approach, which learns binary
codes to simultaneously preserve the similarity relationships
between images and exploit the semantic affinities of labels.
Specifically, a network with multiple layers of nonlinear trans-
formations is employed to capture the local structure of data
samples. To produce compact yet discriminative binary codes,
we directly incorporate the quantization optimization into the
objective and efficiently solve the optimization problem in the
Hamming space to optimize bits of binary codes iteratively
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through coordinate descending. In particular, to incorporate the
knowledge of both the local data structure and the semantic
affinities between manual labels, the network is trained under
four constraints over its output: 1) the quantization error between
the input features and the learned binary codes is minimized; 2)
the similarity relationships between data points are preserved;
3) the bits of learned binary codes are maximally independent to
each other; 4) the classification loss between the predicted labels
and the ground truth semantic labels is minimized. Experimen-
tal results on four datasets, including two typical datasets and
two large scale datasets, validate the efficacy of the proposed
approach in comparison with several state-of-the-art learning
based hashing methods.

II. RELATED WORK

A. Feature Space Transformation

In most existing learning based hashing methods, a single
linear transformation is learned to encode input data samples
with different objectives. Mapping similar items to close binary
codes is achieved through a single projection matrix [11], [14],
[15], [17]. In contrast to the searching metric distance neigh-
bor in unsupervised hashing methods, semi-supervised and su-
pervised hashing methods aim to retrieve semantically similar
neighbor by incorporating pairwise supervised information for
performance enhancement. In addition, compact bilinear projec-
tions and sparse projections are introduced in [9], [12], [26] to
speed up the code generation and save memory cost. However,
similar as most abovementioned approaches, the pursued linear
projection cannot well capture the local neighbor structure of
data samples.

To exploit the local structure of data samples, some recently
proposed hashing approaches go beyond the linear transforma-
tion. For example, a kernelized supervised hashing [21], [27]
employs a kernel formulation for the target hash functions.
Following the work in [28], a graph-based hashing method is
proposed to capture semantic neighborhoods [29]. Manifold in-
ductive method in [30] proposes to learn binary embeddings on
their intrinsic manifolds. While these approaches have shown
performance enhancement over the linear ones, they suffer from
the problems of scalability and out-of-sample extension due to
the non-parametric formulation.

B. Quantization Optimization

Since the discrete constraint imposed by binary codes makes
the optimization a challenging problem to be solved, learning
based hashing usually deals with a relaxed continuous problem
and quantizing the resulting continuous solution to generate
binary codes [14], [18], [28], [29]. However, such methods may
lead to low quality solution as suggested in [24], [31] due to the
accumulation of quantization error.

To deal with the accumulation of quantization error, a ro-
tation matrix is introduced in [10] to balance the variances of
different PCA directions. Binary reconstructive embedding [22]
realizes the poor optima under continuous relaxation and con-
siders the alternating method to iteratively optimize one entry

or one row of the projection matrix. Similarly, fast supervised
hashing based on boosted decision trees [23] also iteratively
optimizes a subset of the binary codes in an alternating optimiz-
ing scheme. Discrete graph hashing [31] preserves the neighbor
structure of massive data in a discrete optimization framework
with a graph-based hashing model, which suffers from the scal-
ability problem. Supervised discrete hashing [24] introduces an
auxiliary variable to reformulate the discrete optimization ob-
jective and adopts an existing kernel based hashing function.
The abovementioned hashing approaches are either suboptimal
due to the optimization on the fixed codes or subjected to the
scalability problem.

III. APPROACH

In this section, we describe our proposed hashing method,
starting with the nonlinear hashing functions to exploit the lo-
cal structure of data samples. We then present the objective
function to be minimized. Also, we develop an alternative opti-
mizing method to solve the formulated problem directly in the
Hamming space.

A. Nonlinear Hashing

While various hashing methods have been proposed in recent
years, most of them aim to seek a single projection matrix [10],
[18], [22], which is essentially linear and cannot preserve the
nonlinear structure of data samples. Our goal is to learn a binary
code for each data point by projecting the input data onto a binary
code. To obtain the desirable binary codes, a good form of hash
functions is important. To this end, in this paper, we consider
the form of a multi-layer neural network to obtain the compact
binary codes through multiple nonlinear transformations.

As shown in Fig. 1, a network with multiple layers of non-
linear transformations is constructed to compute the binary
code zi for each sample xi . Let X = [x1 ,x2 , . . . ,xn ] ∈ Rd×n

denote the training set with n samples, where each sample
xi ∈ Rd(1 ≤ i ≤ n) is a data point of d dimension. Given a
data point xi , a r-bit binary code zi ∈ {+1,−1}r is generated
by a set of hash functions H(x) = [h1(x), h2(x), . . . , hr (x)].
In a network with M + 1 layers, assume the mth layer consists
of p(m ) units, where 1 ≤ m ≤ M . Given a sample xi ∈ Rd , the
output of the first layer is computed as h(1) = s(W (1)xi +
c(1)) ∈ Rp ( 1 )

, where s(·) is a nonlinear activation function,
e.g., the tanh or sigmoid function, and the projection matrix
W (1) ∈ Rp ( 1 )×d and the bias vector c(1) ∈ Rp ( 1 )

are the pa-
rameters to be learned for the first layer of the network. The sec-
ond layer has the output h(2) = s(W (2)h(1) + c(2)) ∈ Rp ( 2 )

with W (2) ∈ Rp ( 2 )×p ( 1 )
and c(2) ∈ Rp ( 2 )

as the projection ma-
trix and the bias vector. Similarly, we can obtain the output of
the mth layer with h(m ) = s(W (m )h(m−1) + c(m )) ∈ Rp (m )

.
And, at the top layer, we can have the output of the network in
the form of

F (x) = (h(M )(x))T ∈ Rp (M )
(1)

where the mapping F : Rd �→ Rp (M )
is a parametric nonlinear

function determined by {W (m ) , c(m )}M
m=1 . Then, the sign of
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the output of the top layer of the network is considered as the
binary codes

zi = (sgn(h(M )(xi)))T .

We put the binary vectors of all samples together as

B = (sgn(h(M )))T (2)

where B ∈ {−1,+1}n×r . On the base of (2), both the param-
eterized network and the set of binary codes of the training
samples can be learned to exploit the nonlinear relationships
between data samples. And the binary code of a new data point
can be obtained by passing it through the learned network.

B. Objective Function

The objective is to find an n × r dimensional binary code
matrix B

arg min
B

Q = Q(L,B) + Q(B,X) (3)

where Q(L,B) measures the difference between the ground
truth labels and the predicted labels based on B, whilst
Q(B,X) indicates the information loss caused by projecting
the samples onto binary codes B. This objective enables to ex-
ploit the semantic affinities of manual labels and preserve the
similarity relationships between data samples simultaneously.

For the first term in (3), by denoting the classifier weight
matrix as P and considering the quadratic loss function, the
classification error has the following formula:

QP (L,B) =
∥
∥L − PBT

∥
∥

2
F

(4)

where L is the labels of the samples and ‖·‖2
F denotes the

Frobenius norm.
The second term in (3) measures the discrepancy between

the data structures of the binary codes and the data samples. It
consists of the quantization loss term

Qquan =
n∑

i=1

∥
∥
∥B(i, :) − F (M )(i, :)

∥
∥
∥

2

F
(5)

and the similarity preserving term

Qsim =
n∑

i=1

n∑

j=1

Sij

∥
∥
∥F (M )(i, :) − F (M )(j, :)

∥
∥
∥

2

F
(6)

with B(i, :) being the binary code of sample xi and S being the
similarity matrix. Combining (5) and (6) together and writing
them in the matrix form, we can reach

QF (B,X) =
∥
∥
∥B − F (M )

∥
∥
∥

2

F
+ αtr

(

(F (M ))T DF (M ))

s.t. B ∈ {−1, 1}n×r ,BT B = nIr (7)

where D = Diag − S, Diag is a diagonal matrix with
Diagi,i =

∑

j Si,j . The constraint BT B = nIr imposes col-
umn orthogonality on B, which leads to the different bits of the
binary vectors to be independent with each other and thus least
information redundance.

1) Bit-independent Constraint: Since concurrently impos-
ing B ∈ {−1,+1}n×r and BT B = nIr will make hashing
computationally intractable, most previous work adopts a re-
laxed form of the independent constraint. However, the relax-
ation [18], [28] may lead to poor codes due to the amplification
of the error as the code length r increases. In contrast, we take
into consideration the independent constraint without resorting
to such error-prone relaxations. By defining a real-valued ma-
trix set Ω = {Y ∈ Rn×r |Y T Y = nIr}, the independent con-
straint is softened to minimizing the distance from matrix B to
the set Ω, which is the minimal distance between matrix B and
any matrix Y ∈ Ω and is with the following formula:

QI (B) = ‖B − Y ‖2
F . (8)

To substitute the independent constraint in objective function (7)
with this softened one, the distance is scaled with a nonnegative
factor. By imposing a very large factor, the distance is enforced
to be zero and thus the distance minimization is turned back into
the independent constraint. In practice, a certain discrepancy
between B and Ω is allowed to make the optimization problem
more flexible.

2) Companion Loss: The quantization loss function defined
in (7) only considers the outputs of the top layer of the network,
where the outputs of hidden layers are not exploited to train the
network. In contrast to the conventional approach which only
measures the output layer loss of the network and propagates
the loss back to the hidden layers, we introduce the companion
loss functions to provide an integrated direct measurement on
each hidden layer. Specifically, the quantization loss function
in (7) is reformulated as

QF (B,X) = Q(M )
F +

M −1∑

m=1

α(m )h
(

Q(m )
F − τ (m )) (9)

where

Q(M )
F =

∥
∥
∥B − F (M )

∥
∥
∥

2

F
+ α(M )tr

(

(F (M ))T DF (M ))

is referred to as the primary loss and

Q(m )
F = tr

(

(F (m ))T DF (m )),m = 1, 2, . . . ,M − 1

are referred to as the companion losses. These companion loss
functions can be seen as additional constraints within the learn-
ing process, which evaluate the qualities of those hidden layer
mappings. Moreover, by introducing the companion loss, an ad-
ditional feedback is brought in for each hidden layer, which can
be viewed as a new regularization [32], [33]. Concerning that
the performance of the overall network might be interfered by
the direct pursuit of locality structure preserving at all hidden
layers, the impact of the companion loss is weaken during train-
ing to ensure that the overall goal of learning good structure
preserving binary codes at the output layer is not fundamentally
altered. The method by which we pursue this companion loss
weakening is to employ the hinge loss function, which is defined
as: h(x) = max(x, 0). The positive threshold τ (m ) controls the
loss Q(m ) to appear or not in the learning procedure. The second
term in (9) will disappear during the learning procedure if the
overall loss of the mth hidden layer is below the threshold τ (m ) .
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The loss of the mth hidden layer will not impact the course of
learning if its value is lower than the threshold τ (m ) in (9). The
mth balance parameter α(m ) balances the effects of the primary
loss and the corresponding companion loss.

On the basis of the semantic exploition in (4) and the similarity
preservation in (8) and (9), the overall objective function in (3)
has the specific form of

arg min
B,P ,{F (m ) }M

m = 1 ,Y

Q = QP + λ1QI + λ2QF + λ3QR

s.t. B ∈ {−1, 1}n×r (10)

with QP , QI , QF defined in (4), (8), (9), respectively, and

QR = ‖P ‖2
F +

M∑

m=1

∥
∥
∥W (m )

∥
∥
∥

2

F
+

M∑

m=1

∥
∥
∥c(m )

∥
∥
∥

2

F

contains the regularizers to control the scales of the parame-
ters. In (10), the first three terms represent the classification
error, column independent constraint on learned binary matrix,
and the measurement on the trained network with quantization
loss and similarity preservation, respectively. λ1 , λ2 , and λ3 are
the parameters representing the trade-off among the effects of
different terms.

C. Optimization

To solve the optimization problem described in (10), we
decompose the problem into four simpler sub-problems that
are optimized in an alternative procedure. This results in the
following four steps.

P -step: By fixing all variables but P , the objective in (10) is
equivalently transformed to

arg min
P

Q =
∥
∥L − PBT

∥
∥

2
F

+ λ3 ‖P ‖2
F . (11)

For this problem, with the given B, it is easy to solve P by
the regularized least squares problem, which has a closed-form
solution

P = LB(BT B + λ3I)−1 . (12)

F -step: This sub-problem has the following form:

arg min
{W (m ) ,c(m ) }M

m = 1

Q = λ2

(

Q(M )
F +

M −1∑

m=1

α(m )h
(

Q(m )
F − τ (m )

)
)

+ λ3

M∑

m=1

(∥
∥
∥W (m )

∥
∥
∥

2

F
+

∥
∥
∥c(m )

∥
∥
∥

2

F

)

.

(13)

This optimization problem can be solved by the stochas-
tic gradient descent method, which learns the parameters
{W (m ) , c(m )}M

m=1 . The gradients of the objective function
in (13) with respect to the parameters W (M ) and c(M ) at the
top layer are computed as follows:

∂Q
∂W (M ) = λ2

∂Q(M )
F

∂W (M ) + 2λ3W
(M ) (14)

∂Q
∂c(M ) = λ2

∂Q(M )
F

∂c(M ) + 2λ3c
(M ) . (15)

For the hidden layers with m = 1, 2, . . . ,M − 1, the gradients
are computed as follows:

∂Q
∂W (m ) = λ2

(

∂Q(M )
F

∂W (m ) +
M −1∑

�=m

α(�)h′
(

Q(�)
F − τ (�)

) ∂Q(�)
F

∂W (m )

)

+ 2λ3W
(m ) (16)

∂Q
∂c(m ) = λ2

(

∂Q(M )
F

∂c(m ) +
M −1∑

�=m

α(�)h′
(

Q(�)
F − τ (�)

) ∂Q(�)
F

∂c(m )

)

+ 2λ3c
(m ) (17)

where h′(·) is the derivative function of h(·) with the value at
non-differentiable point x = 0 as zero. For 1 ≤ m ≤ � ≤ M ,
we have

∂Q(�)
F

∂W (m ) =
∂Q(�)

F

∂c(m )

(

F (m−1)
)T

.

For 1 ≤ m = � < M , the gradient of Q(�)
F with respect to c(m )

is computed by

∂Q(m )
F

∂c(m ) =
(

(D + DT )F (m )) � s′
(

Z(m ))

otherwise

∂Q(M )
F

∂c(M ) =
(

α(M )(D + DT
)

F (M ) − B + F (M )) � s′
(

Z(M ))

when m = � = M . And for 1 ≤ m < � ≤ M , the gradi-
ent could be obtained according to the following updating
equation:

∂Q(�)
F

∂c(m ) =

(

(W (m+1))T ∂Q(�)
F

∂c(m+1)

)

� s′(Z(m )).

Here � represents element-wise multiplication, Z(m ) =
W (m )F (m−1) + c(m ) is the inner state of each layer, and s′(·)
is the derivative function of s(·).

Then, parameters are updated by using the following gradient
descent algorithm until convergence:

W (m ) = W (m ) − η
∂Q

∂W (m ) (18)

c(m ) = c(m ) − η
∂Q

∂c(m ) (19)

where η is the learning rate. Algorithm 1 summarizes the
detailed procedure of the network training.

B-step: The B-subproblem is formulated as

arg min
B

Q =
∥
∥L − PBT

∥
∥

2
F

+ λ1 ‖B − Y ‖2
F

+ λ2

(

Q(M )
F +

M −1∑

m=1

α(m )h
(

Q(m )
F − τ (m ))

)

s.t. B ∈ {−1, 1}n×r . (20)
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With simple mathematical derivation, one can arrive at the
equivalent formulation

arg min
B

Q = tr(PBT BP T ) − 2tr(BT U) (21)

where U = LT P + λ1Y + λ2F
(M ) .

Since the binary constraint of B ∈ {−1,+1}n×r makes the
objective discontinuous or indifferentiable, it is more challeng-
ing to solve this subproblem. Instead of the continuous relax-
ation, we consider fixing all but one column bi of B, and op-
timize the original objective with respect to this column bi .
This optimization problem can provide an exact and optimal
update to this column. Then, the binary code matrix is up-
dated column by column in the cyclic coordinate descending
scheme [22], [34].

Let bi(0 ≤ i ≤ r) be the ith column of B and B̂ be the matrix
of B excluding bi . Similarly, pi and P̂ could be defined. We
can have

tr(PBT BP T ) = const. + 2pT
i P̂ B̂

T
bi .

Similarly, we can define ui and derive that

tr(BT U) = const. + uT
i bi .

With these derivations, the minimization problem with respect
to the ith column of B is formulated as

arg min
bi

(pT
i P̂ B̂

T − uT
i )bi .

This problem has the closed-form solution

bi = sgn(ui − B̂P̂
T
pi). (22)

The optimal solution of (20) can be obtained by iteratively
solving the following r sequential problems:

arg min
bi

(pT
i P̂ B̂

T − uT
i )bi , i = 1, 2, . . . , r. (23)

Y -step: This has the following form:

arg min
Y

Q = λ1 ‖B − Y ‖2
F . (24)

This objective can be equivalently reformulated as

arg max
Y

Q = λ1tr(BT Y ). (25)

The solution of this subproblem can be achieved with the aid of
the singular value decomposition (SVD) of B

B = UΣV T =
r ′

∑

k=1

σkukvT
k

where r′ ≤ r is the rank of B, σ1 , . . . , σr ′ are the positive singu-
lar values, and U = [u1 , . . . ,ur ′ ] and V = [v1 , . . . ,vr ′ ] con-
tain the left- and right-singular vectors, respectively. If B is full
column rank, i.e. r′ = r, then

Ỹ = UV T

is the optimal solution to subproblem (25). Otherwise, the op-
timal solution could be obtained with the aid of Gram-Schmidt
process. On the base of singular vectors in U and V , it is easily to
construct matrices Û ∈ Rn×(r−r ′) and V̂ ∈ Rr×(r−r ′) such that
Û

T
Û = Ir−r ′ , UÛ

T
= 0, and V̂

T
V̂ = Ir−r ′ , V V̂

T
= 0.

Then, the matrix

Ỹ = [UÛ ][V V̂ ]T (26)

is an optimal solution to subproblem (25). The full column rank
condition can be seen as a special case of (26) by setting both
Û and V̂ as 0.

Algorithm 2 summarizes our solution to the objective in
Section III-B.

IV. EXPERIMENTS

In this section, we conduct experiments on four datasets,
namely CIFAR10 [35], MNIST [36], SUN397 [37], and
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TABLE I
RESULTS ON THE CIFAR10 DATASET. THE SECOND TO FOURTH COLUMNS SHOW THE MEAN AVERAGE PRECISION RESULTS OF HAMMING

RANKING PERFORMANCE. THE FIFTH TO SEVENTH COLUMNS SHOW THE AVERAGE PRECISION FOR THE TOP 500 RETURNED

SAMPLES, WHILE THE LAST THREE COLUMNS SHOW THE RESULTS OF HAMMING LOOKUP PRECISION WITHIN RADIUS OF 2

Methods Mean average precision(%) Precision@500(%) Precision@(radius==2)(%)

16 32 64 16 32 64 16 32 64

LSH [1] 12.63 13.70 14.62 15.32 17.23 19.36 16.67 6.35 0.1
SMLSH [8] 14.96 16.41 16.98 17.82 19.75 20.36 18.28 14.65 4.03
ITQ [10] 15.57 15.80 16.57 19.91 21.04 22.53 22.89 15.66 1.44
SPLH [18] 17.08 19.38 21.21 21.22 26.39 29.34 16.70 27.17 30.02
CCA-ITQ [10] 16.21 16.02 16.49 24.63 24.44 26.77 21.45 28.22 26.47
FastH [23] 27.94 33.09 36.55 37.74 43.13 46.84 37.76 34.42 11.64
SDH [24] 29.21 29.22 32.67 39.08 39.62 42.15 30.19 36.90 38.98
DeepH [25] 24.04 25.96 27.53 32.45 34.99 36.85 33.25 37.42 25.43
NDH 33.75 35.93 37.90 43.58 46.67 48.24 36.10 43.62 32.32

Fig. 2. Precision-recall curves on the CIFAR10 dataset for different binary code lengths. (a) 16 bits. (b) 32 bits. (c) 64 bits.

ILSVRC2012 [38], to evaluate the effectiveness of the pro-
posed NDH approach by comparing with several state-of-the-art
methods.

A. Datasets

1) CIFAR10: It is a set of 60000 manually labeled color
images, which is sampled from the well-known 80M Tiny
image benchmark [39]. They are from 10 classes, and each
class has 6000 images. Each image is with the size of 32 ×
32 and represented by a 512-D GIST feature vector [40].
Besides the hand-crafted GIST features, we also extract
deep features with Convolutional Neural Networks (CNN)
to evaluate different hashing methods. In particular, we
follow the same settings of the CNN model in [41], which
is pre-trained on ImageNet and finely tuned by the training
set of CIFAR10, to extract a 1024 dimensional feature
vector for each image.

2) MNIST: It is a handwritten digit dataset consisting of
70000 images with the size of 28 × 28. Each image is
associated with a digit from ‘0’ to ‘9’ and represented as
a 784-dimensional gray-scale feature vector by concate-
nating all pixels.

3) SUN397: This dataset contains 108 K images which are
classified into 397 scene categories. Since images in this
dataset are captured in more wild and uncontrolled condi-

TABLE II
COMPUTATION TIMES OF DIFFERENT HASHING METHODS ON THE CIFAR10

DATASET WHEN THE LENGTH OF HASH CODE IS SET TO BE 32 BITS

Methods # of training samples # of testing samples Time

Train(s) Test(ms)

LSH [1] – 1000 – 22.4
SMLSH [8] 5000 1000 359.98 350.7
ITQ [10] 5000 1000 0.05 27.2
SPLH [18] 5000 1000 12.82 35.1
CCA-ITQ [10] 5000 1000 0.26 149.2
FastH [23] 5000 1000 74.65 5759.2
SDH [24] 5000 1000 1.33 1440.3
DeepH [25] 5000 1000 16.43 1181
NDH 5000 1000 25.23 937.7

tions than the two above datasets, it is more challenging to
retrieve semantic neighbors. Similarly, we also represent
each image as a 4096-dimensional feature vector by using
the CNN model in [41]. The model is pre-trained on the
ImageNet [42] dataset and finely tuned with the training
set of SUN397. To be specific, the output of the layer ‘fc7’
is extracted as the CNN feature as suggested in [43] so
that the neuron activation values of internal layers of CNN
are used as features.
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TABLE III
COMPARISON OF RESULTS ON THE CIFAR10 DATASET WITH DIFFERENT NETWORK SETTINGS

# of layers Mean average precision(%) Precision@500(%) Precision@(radius==2)(%)

16 32 64 16 32 64 16 32 64

Two 31.48 35.85 37.81 42.06 47.11 48.21 33.86 44.57 32.69
Three 33.75 36.59 38.25 43.58 46.89 48.50 36.10 43.74 31.75
Four 33.75 35.93 37.90 43.58 46.67 48.24 36.10 43.62 32.32
Five 32.46 35.85 37.93 43.10 46.33 48.23 35.61 44.22 32.67

Fig. 3. Performance results of different hashing methods on the CIFAR10 dataset with CNN features. (a) Mean average precision. (b) Precision at top 2000.
(c) Recall at top 2000.

Fig. 4. mAP values with respect to the parameter variations on the CIFAR10 dataset with binary code length of 32 bits. (a) The impact of classification error. (b)
The impact of bit independence. (c) The impact of nonlinear network.

4) ILSVRC2012: As a subset of ImageNet [42], this large
dataset contains 1000 categories and 1.2 million images.
Similarly, a 4096-dimensional feature vector is extracted
for each image with the original CNN model provided in
Caffe toolbox [44].

B. Evaluation Protocol

We use three metrics to measure the performance of different
methods: mean average precision, precision at N samples, and
Hamming lookup precision within a set Hamming radius r.
The mean average precision presents an overall measurement
of the retrieval performance by computing the area under the
precision-recall curve, which delivers good discrimination and
stability. Given top N returned samples, precision at N samples is
calculated as the percentage of true neighbors. Hamming lookup

precision measures the precision over all retrieved samples that
fall into the buckets within a set Hamming radius, say r = 2,
and a query with no returned point is treated as failed case. With
the datasets fully annotated, the category information is used
to define ground truth neighbors. All experiments are repeated
5 times and the averaged values are took as the final result.

C. Results on CIFAR10

Following the same setting in [18], we randomly sample 1000
images with 100 images per class to form the query set and use
the remaining images as the database to test the hashing perfor-
mance. And 5000 out of the 59000 database images are selected
to construct the training set with 500 images per category. We
normalize the data samples and compute the chi square distances
to one thousand uniformly sampled points. The performance is
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evaluated on binary codes with the lengths of 16, 32, and 64
bits.

The results of our NDH approach are compared with eight
state-of-the-art hashing methods which cover both unsuper-
vised method and supervised method. To be specific, LSH [1],
SMLSH [8], ITQ [10], SPLH [18], CCA-ITQ [10], FastH [23],
SDH [24], DeepH [25] are included. LSH and SMLSH are
data independent hashing methods. While LSH is the classical
hashing method, SMLSH is recently proposed to exploit more
complex structure of data representation. ITQ and SPLH are the
representatives of unsupervised and semi-supervised method,
respectively. And the remaining ones are supervised methods,
in which CCA-ITQ is the supervised extension of ITQ. While
SDH and FastH are the recently proposed work to deal with the
quantization optimization imposed by the binary constraint, the
DeepH seeks a nonlinear transformation to learn compact binary
codes. Due to the absence of public available implementation of
SMLSH, we carefully reimplement it according to the descrip-
tion in [8] and set the number of feature scales as 3 and the size
of the bit selection pool as 400% as suggested by the authors.
For all the other compared methods, we use source codes kindly
provided by the authors and adopt the suggested parameters of
these methods from the corresponding authors. For our NDH
method, we empirically set the network model as a 4-layer net-
work (M = 3) with dimensions of [200 → 120 → 80 → 16],
[200 → 120 → 80 → 32], and [200 → 120 → 80 → 64] for the
bit length of 16, 32, and 64, respectively. The tanh function is
taken as the nonlinear activation function in the network model.
We initialize the biases {c(m )}M

m=1 to be 0 and the weights
{W (m )}M

m=1 at each layer with the commonly used heuristic
of uniform sampling [33]. Each element of W (m ) is uniformly
sampled from the range [− 1√

col(m )
, 1√

col(m )
], where col(m ) is the

number of columns of W (m ) . The iteration numbers R and L
are empirically set as 5 and 3. And we set coefficients α(1) and
α(2) as 20, α(3) as 100, the thresholds τ (1) and τ (2) as 1000, λ1
as 1e-3, λ2 as 1e-5, λ3 as 1e-5 and learning rate η as 0.001. We
tune the parameters through a 5 fold cross validation. At each
run of the cross validation, one fifth of the training samples are
selected as validation set. The same setting of our NDH method
is adopted for all the other datasets.

1) Comparison With Baseline Methods: Table I shows the
performance of different hashing methods in terms of mean
average precision, top 500 precision, and Hamming lookup
precision on the CIFAR10 dataset with respect to different
length of binary code. We can see that our NDH method al-
ways outperforms all other methods by a large margin for
the first two evaluation metrics and competitive to previous
state-of-the-art methods. Besides our NDH method, no method
could outperform the remaining competitors for any evalua-
tion metric. We attribute this to the ability of local structure
preservation by the multi-layer nonlinear transformation and
discrete optimization with supervised information. We also no-
tice that SMLSH shows performance improvement against LSH
by data structure exploitation and supervised bit selection. Nev-
ertheless, the last seven learning based hashing methods ex-
hibit higher performance than those of data independent hash-
ing methods, LSH and SMLSH. To get a deep observation

Fig. 5. Objective function value with respect to the number of iterations
L of our NDH approach on the CIFAR10 dataset with binary code length
of 32 bits.

of the mean average precision metric, the values of precision
and recall for different Hamming distances are reported as the
precision-recall curves in Fig. 2. As can be seen, our NDH
method delivers higher performance than the remaining baseline
methods.

Besides the performance, we also compare the time cost of
our NDH method with those of other baseline methods. Both the
training and testing times of all involved methods are reported
in Table II for 32-bit binary codes on the CIFAR10 dataset.
The computing platform is with 4.0 GHz Intel CPU and 32 GB
RAM. From the table, we can see that both the training time and
the testing time consumed by our NDH method are comparable
to those of existing methods.

2) Effect of Different Layers: We evaluate the performance
of our NDH method on network models with different numbers
of layers. Specifically, we vary the network by setting the di-
mensions of the first M layers as [80], [120 → 80], [200 → 120
→ 80], and [300 → 200 → 120 → 80] by setting M to 1-4,
respectively. The results are summarized in Table III. We can
observe that performance varies with different network settings
and the best performance is achieved when the network model
is with 2 and 3 layers rather than the largest 4 layers. This is
interpreted as that a network model with 2 or 3 layer already
have the ability to capture the local structure of the data sam-
ples. With larger layer number, the training process may lead to
overfitting because there are more parameters to be trained.

3) Evaluation on Different Features: We also conduct ex-
periments on the CIFAR10 dataset with the state-of-the-art
deep CNN features. All experimental settings are the same as
those of experiments with GIST features but with CNN features.
Fig. 3 summarizes the performance of different hashing meth-
ods. Compared with the results with hand-crafted features, the
performance of all hashing methods is substantially improved
since the CNN features deliver stronger representations of the
images. Nevertheless, our NDH method still show superior
performance compared to baseline methods.
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TABLE IV
RESULTS ON THE MNIST DATASET. THE THIRD TO FIFTH COLUMNS SHOW THE MEAN AVERAGE PRECISION RESULTS OF HAMMING

RANKING PERFORMANCE. THE SIXTH TO EIGHTH COLUMNS SHOW THE AVERAGE PRECISION FOR THE TOP 500 RETURNED

SAMPLES, WHILE THE LAST THREE COLUMNS SHOW THE RESULTS OF HAMMING LOOKUP PRECISION WITH RADIUS OF 2

Methods # of training samples Mean average precision(%) Precision@500(%) Precision@(radius==2)(%)

16 32 64 16 32 64 16 32 64

LSH [1] – 18.51 25.41 32.78 28.08 38.56 48.39 33.66 39.69 3.8
SMLSH [8] 5000 31.68 38.28 43.42 41.93 49.16 55.14 46.36 53.37 13.41
ITQ [10] 5000 38.11 42.13 43.63 54.35 60.15 62.03 64.51 73.49 14.55
SPLH [18] 5000 48.67 49.38 48.71 59.69 60.57 63.06 61.23 73.87 48.67
CCA-ITQ [10] 5000 58.61 60.34 62.51 67.95 69.37 71.42 61.75 72.64 55.65
FastH [23] 5000 95.04 96.19 96.71 93.60 94.67 95.27 77.94 87.65 82.57
SDH [24] 5000 92.28 93.74 94.81 91.45 92.07 92.88 57.72 81.61 83.86
DeepH [25] 5000 70.91 74.10 76.34 76.75 79.13 81.55 72.72 80.08 69.82
NDH 5000 94.64 95.88 96.29 93.82 94.81 94.99 67.56 86.64 87.75

Fig. 6. Precision-recall curves on the MNIST dataset for different binary code lengths. (a) 16 bits. (b) 32 bits. (c) 64 bits.

TABLE V
RESULTS ON THE SUN397 DATASET. THE THIRD TO FIFTH COLUMNS SHOW THE MEAN AVERAGE PRECISION RESULTS OF HAMMING

RANKING PERFORMANCE. THE SIXTH TO EIGHTH COLUMNS SHOW THE AVERAGE PRECISION FOR THE TOP 2000 RETURNED

SAMPLES, WHILE THE LAST TWO COLUMNS SHOW THE RESULTS OF HAMMING LOOKUP PRECISION WITH RADIUS OF 2.
HAMMING LOOKUP PRECISIONS ON 128 BIT BINARY CODES ARE NOT SHOWN BECAUSE IT IS IMPRACTICAL

Methods # of training samples Mean average precision(%) Precision@2000(%) Precision@(r==2)(%)

48 64 128 48 64 128 48 64

ITQ [10] 5000 5.16 5.58 6.73 6.14 6.43 6.98 2.03 0.29
SPLH [18] 5000 1.27 1.89 0.99 2.90 3.33 2.65 6.90 4.82
CCA-ITQ [10] 5000 7.22 6.38 6.08 6.21 5.90 5.56 3.37 1.31
FastH [23] 5000 2.71 4.98 8.28 2.90 3.90 5.22 0.11 0.14
SDH [24] 5000 9.87 9.65 11.85 7.57 7.81 8.52 11.71 8.00
DeepH [25] 5000 9.31 9.73 8.32 7.54 7.52 6.76 2.87 0.45
NDH 5000 11.39 12.96 13.86 7.81 8.32 9.05 8.81 6.23

ITQ [10] 20000 5.24 5.59 6.69 6.17 6.37 6.90 2.28 0.25
SPLH [18] 20000 4.57 2.81 1.79 4.94 3.04 2.93 1.05 5.67
CCA-ITQ [10] 20000 6.22 6.13 6.26 5.91 5.76 5.63 3.25 1.20
FastH [23] 20000 8.81 11.07 16.74 5.36 5.93 7.51 1.00 0.54
SDH [24] 20000 8.68 9.74 11.84 7.39 7.73 8.46 12.56 7.28
DeepH [25] 20000 12.41 14.35 14.20 9.34 9.59 9.50 6.45 1.73
NDH 20000 14.05 15.68 16.59 8.50 9.05 9.70 9.95 6.02

4) Parameter Analysis: We have also analyzed the impacts
of parameter variations in the course of NDH training to see the
sensitivity of the performance with respect to the parameters
and the contributions of the three terms QP , QI and QF in
the objective function. By assuming a coefficient λ0 (default
as 1) for QP , we measure the performance with respect to λ0 ,
λ1 and λ2 . Specifically, we measure the mAP values on the

CIFAR10 dataset with the length of binary code as 32 bits, as
shown in Fig. 4. Fig. 4(a) shows that increasing the proportion
of the supervised classification error in the objective leads to
performance improvement, which is achieved at the cost of
overfitting and higher variation. Actually, the variation of λ0 is
equivalent to scaling the other parameters, λ1 , λ2 and λ3 . As
shown in Fig. 4(b), 4(c), the overall performance is improved
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Fig. 7. Precision at top N retrieved samples on the SUN397 dataset with 5000 training samples. (a) 48 bits. (b) 64 bits. (c) 128 bits.

Fig. 8. Precision-recall curves on the SUN397 dataset with 5000 training samples for different binary code lengths. (a) 48 bits. (b) 64 bits. (c) 128 bits.

after introducing both the bit independence constraint and the
nonlinear network.

5) Convergence Analysis: We have also analyzed the con-
vergence of our NDH approach. As shown in Fig. 5, the objective
in (10) converges quickly after several iterations of alternative
update. This mainly benefits from the closed-form solution in
the B-step, which quickly passes on the feedback of the linear
classifier P to the binary matrix B. We notice that the objective
function value changes slowly after 3 iterations.

D. Results on MNIST

Similar as the setting of experiments on the CIFAR10 dataset,
we randomly set aside 100 images per class to form a query set
of 1000 images and construct the database with the remaining
images. The training set is with the size of 5000 images by se-
lecting 500 images for each class. We adopt the same evaluation
metrics on the CIFAR10 dataset to compare our NDH method
with other baselines. Table IV reports the performance of differ-
ent hashing methods on the MNIST dataset. From the reported
performance on binary codes with 16, 32, and 64 bits lengths,
we can lead to the observation that our NDH method rank top
among all methods. This is explained by that the supervised
information and data structure of this dataset are easier to be ex-
ploited and the recently proposed supervised hashing methods
demonstrate the ability to realize the exploitation. Fig. 6 presents
the precision-recall curves to give a detailed comparison among
all methods. Compared to the results on the CIFAR10 dataset,
all hashing methods deliver higher performance. We interpret
this as the handwritten digit images in this dataset show simpler
pattern than the objects in the CIFAR10 dataset. This leads to

lower requirement on the hashing method and is in accord with
the analysis above.

E. Results on SUN397

This dataset is more challenging than the above two datasets
because this dataset is larger and with more categories and im-
ages in this dataset are captured under wild and uncontrolled
conditions. Similar with the experimental settings above, 8000
images are randomly sampled as query images and the remain-
ing images are left to form the database. Table V shows the per-
formance of different hashing methods on the SUN397 dataset
with different numbers of training samples. We notice that the
overall performance is lower than those on the above CIFAR10
and MNIST datasets and our NDH method outperforms the
best competitor in terms of the comprehensive mean average
precision. We can also see that our NDH method presents supe-
rior performance for all evaluation metrics when using different
numbers of training samples. The data independent hashing
methods LSH and SMLSH are not evaluated because they are
difficult to be used for such large dataset. Fig. 7 shows the pre-
cision of top N retrieved samples for each hashing method. The
precision-recall curves with 5000 and 20000 training samples
are demonstrated in Figs. 8 and 9, respectively. The curves in
all above figures evidently show that our NDH method delivers
the best performance.

F. Results on ILSVRC2012

ILSVRC2012 is a large and challenging dataset. Due to the
absence of original test set, we follow the settings in [23] to sub-
stitute the query set with the validation set and use the provided
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Fig. 9. Precision-recall curves on the SUN397 dataset with 20000 training samples for different binary code lengths. (a) 48 bits. (b) 64 bits. (c) 128 bits.

TABLE VI
RESULTS ON THE ILSVRC2012 DATASET. THE THIRD TO FIFTH COLUMNS SHOW THE MEAN AVERAGE PRECISION RESULTS OF HAMMING

RANKING PERFORMANCE. THE SIXTH TO EIGHTH COLUMNS SHOW THE AVERAGE PRECISION FOR THE TOP 2000 RETURNED

SAMPLES, WHILE THE LAST TWO COLUMNS SHOW THE RESULTS OF HAMMING LOOKUP PRECISION WITH RADIUS OF 2

Methods # of training samples Mean average precision(%) Precision@2000(%) Precision@(r==2)(%)

48 64 128 48 64 128 48 64

ITQ [10] 50000 3.92 4.99 7.03 8.70 10.15 12.77 9.84 3.47
SPLH [18] 50000 4.50 5.85 9.43 8.54 9.96 13.07 5.83 1.27
CCA-ITQ [10] 50000 4.45 5.94 10.97 9.44 11.12 15.32 11.57 8.69
FastH [23] 50000 0.55 0.93 2.98 1.79 3.64 4.71 0.26 0.03
SDH [24] 50000 7.03 8.30 10.85 10.14 11.69 14.30 12.20 7.59
DeepH [25] 50000 4.00 5.55 10.87 9.35 11.12 15.84 11.80 6.94
NDH 50000 7.31 8.66 11.04 10.69 12.17 14.46 13.24 8.26

Fig. 10. Precision-recall curves on the ILSVRC2012 dataset with 50 000 training samples for different binary code lengths. (a) 48 bits. (b) 64 bits. (c) 128 bits.

training set as the database. Table VI summarizes the perfor-
mance of different hashing methods, which indicates our NDH
method is competitive to other methods. Since this dataset con-
tains more than one million samples, the values are relatively
low. Similar to that on the SUN397 dataset, we only show the
results of leaning based hashing methods. Fig. 10 shows the
precision-recall curves for 48, 64, and 128 bits binary codes,
which demonstrate the superiority of our NDH method.

V. CONCLUSION

In this paper, we have proposed a nonlinear discrete hashing
(NDH) approach to encode images as binary codes for scalable
image retrieval. To preserve the local structure of data samples,
the compact binary codes are learned through a network with
multiple nonlinear transformations. To minimize the loss from

the continuous results to the quantized codes, the discrete op-
timization problem is directly solved in the Hamming space
to learn optimal binary codes. Extensive experimental results
demonstrate the superiority of the proposed method.

REFERENCES

[1] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions,” Commun. ACM, vol. 51, no. 1,
pp. 117–122, 2008.

[2] Q. Shi et al., “Hash kernels for structured data,” J. Mach. Learn. Res.,
vol. 10, pp. 2615–2637, 2009.

[3] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proc. 20th Annu. Symp.
Comput. Geom., 2004, pp. 253–262.

[4] M. Charikar, “Similarity estimation techniques from rounding algo-
rithms,” in Proc. 34th Annu. ACM Symp. Theory Comput., 2002,
pp. 380–388.



134 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 1, JANUARY 2017

[5] J. Ji et al., “Batch-orthogonal locality-sensitive hashingfor angular
similarity,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 10,
pp. 1963–1974, Oct. 2014.

[6] M. Raginsky and S. Lazebnik, “Locality-sensitive binary codes from
shift-invariant kernels,” in Proc. Adv. Neural Inf. Process. Syst., 2009,
pp. 1509–1517.

[7] S. Kim and S. Choi, “Bilinear random projections for locality-sensitive
binary codes,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun.
2015, pp. 1338–1346.

[8] L. Weng et al., “Supervised multi-scale locality sensitive hashing,” in
Proc. 5th ACM Int. Conf. Multimedia Retrieval, 2015, pp. 259–266.

[9] W. Liu, J. Wang, Y. Mu, S. Kumar, and S. Chang, “Compact hyperplane
hashing with bilinear functions,” in Proc. 29th Int. Conf. Mach. Learn.,
2012, pp. 17–24.

[10] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quantiza-
tion: A procrustean approach to learning binary codes for large-scale
image retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12,
pp. 2916–2929, Dec. 2013.

[11] K. He, F. Wen, and J. Sun, “K-means hashing: An affinity-preserving
quantization method for learning binary compact codes,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., Jun. 2013, pp. 2938–2945.

[12] Y. Gong, S. Kumar, H. A. Rowley, and S. Lazebnik, “Learning binary
codes for high-dimensional data using bilinear projections,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., Jun. 2013, pp. 484–491.
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